- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Asymptotic Behavior of Solutions for the Belousov-Zhabotinskii Reaction Diffusion System
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-1-61,
author = {C. V. Pao},
title = {Asymptotic Behavior of Solutions for the Belousov-Zhabotinskii Reaction Diffusion System},
journal = {Journal of Partial Differential Equations},
year = {1988},
volume = {1},
number = {1},
pages = {61--66},
abstract = { The present paper characterizes the asymptotic behavior of the timedependenr solution of the coupled Belousov-Zhabotinskii reaction diffusion equations in relation to the steady-state solutions ot the corresponding boundary value problem. This characterization leads to an cxplicit reltionship among the various physical constants and the boundary and initial functions.},
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5853.html}
}
TY - JOUR
T1 - Asymptotic Behavior of Solutions for the Belousov-Zhabotinskii Reaction Diffusion System
AU - C. V. Pao
JO - Journal of Partial Differential Equations
VL - 1
SP - 61
EP - 66
PY - 1988
DA - 1988/01
SN - 1
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5853.html
KW -
AB - The present paper characterizes the asymptotic behavior of the timedependenr solution of the coupled Belousov-Zhabotinskii reaction diffusion equations in relation to the steady-state solutions ot the corresponding boundary value problem. This characterization leads to an cxplicit reltionship among the various physical constants and the boundary and initial functions.
C. V. Pao. (1988). Asymptotic Behavior of Solutions for the Belousov-Zhabotinskii Reaction Diffusion System.
Journal of Partial Differential Equations. 1 (1).
61-66.
doi:
Copy to clipboard