- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
An Evolutionary Continuous Casting Problem of Two Phases and Its Periodic Behaviour
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-2-7,
author = {Yi Fahuai},
title = {An Evolutionary Continuous Casting Problem of Two Phases and Its Periodic Behaviour},
journal = {Journal of Partial Differential Equations},
year = {1989},
volume = {2},
number = {3},
pages = {7--22},
abstract = { The present paper studies a continuous casting problem of two phases: \frac{∂H(u)}{∂t} + b (t) \frac{∂H(u)}{∂x} - Δu = 0 \quad in 𝒟¹ (Ω_T) where u is che temperature. H (u) is a maximal monotonic graph. Ω_T = G × (0, T), where G = (0, a) × (0. 1) stands for the ingot. We obtain the existence and the uniqueness of weak solution and the existence of periodic solution for the first boundary problem. },
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5831.html}
}
TY - JOUR
T1 - An Evolutionary Continuous Casting Problem of Two Phases and Its Periodic Behaviour
AU - Yi Fahuai
JO - Journal of Partial Differential Equations
VL - 3
SP - 7
EP - 22
PY - 1989
DA - 1989/02
SN - 2
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5831.html
KW -
AB - The present paper studies a continuous casting problem of two phases: \frac{∂H(u)}{∂t} + b (t) \frac{∂H(u)}{∂x} - Δu = 0 \quad in 𝒟¹ (Ω_T) where u is che temperature. H (u) is a maximal monotonic graph. Ω_T = G × (0, T), where G = (0, a) × (0. 1) stands for the ingot. We obtain the existence and the uniqueness of weak solution and the existence of periodic solution for the first boundary problem.
Yi Fahuai. (1989). An Evolutionary Continuous Casting Problem of Two Phases and Its Periodic Behaviour.
Journal of Partial Differential Equations. 2 (3).
7-22.
doi:
Copy to clipboard