- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Weak Solutions of Second Order Parabolic Equations in Noncylindrical Domains
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-2-76,
author = {Yong Jiongmin},
title = {Weak Solutions of Second Order Parabolic Equations in Noncylindrical Domains},
journal = {Journal of Partial Differential Equations},
year = {1989},
volume = {2},
number = {2},
pages = {76--86},
abstract = { Penalization method is used to get the existence of the weak solutions or parabolic equations in noncylindrical domains. The asympcotic decay and the existence and uniqueness of the periodic solutions are obtained as well.},
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5828.html}
}
TY - JOUR
T1 - Weak Solutions of Second Order Parabolic Equations in Noncylindrical Domains
AU - Yong Jiongmin
JO - Journal of Partial Differential Equations
VL - 2
SP - 76
EP - 86
PY - 1989
DA - 1989/02
SN - 2
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5828.html
KW -
AB - Penalization method is used to get the existence of the weak solutions or parabolic equations in noncylindrical domains. The asympcotic decay and the existence and uniqueness of the periodic solutions are obtained as well.
Yong Jiongmin. (1989). Weak Solutions of Second Order Parabolic Equations in Noncylindrical Domains.
Journal of Partial Differential Equations. 2 (2).
76-86.
doi:
Copy to clipboard