- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
On a Class of Quasilinear Parabolic Equations of Second Order with Double-degeneracy
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-3-49,
author = {Yin Jingxue},
title = {On a Class of Quasilinear Parabolic Equations of Second Order with Double-degeneracy},
journal = {Journal of Partial Differential Equations},
year = {1990},
volume = {3},
number = {4},
pages = {49--64},
abstract = { In this paper we study the first boundary value problem for nonlinear diffusion equation \frac{∂u}{∂t} + \frac{∂}{∂x}f(u) = \frac{∂}{∂x}A(\frac{∂}{∂x}B(u)) whereA(s) = ∫¹_0a(σ)dσ, B(s) = ∫¹_0b(σ)dσ with a(s) ≥ 0, b(s) ≥ 0. We prove the existence of BV solutions under the much general structural conditions lim_{s → + ∞} A(s) = +∞, lim_{s → - ∞} A(s) = -∞ Moreover, we show the uniqueness without any structural conditions.},
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5813.html}
}
TY - JOUR
T1 - On a Class of Quasilinear Parabolic Equations of Second Order with Double-degeneracy
AU - Yin Jingxue
JO - Journal of Partial Differential Equations
VL - 4
SP - 49
EP - 64
PY - 1990
DA - 1990/03
SN - 3
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5813.html
KW - Quasilinear parabolic equation
KW - degeneracy
KW - existence
KW - uniqueness
AB - In this paper we study the first boundary value problem for nonlinear diffusion equation \frac{∂u}{∂t} + \frac{∂}{∂x}f(u) = \frac{∂}{∂x}A(\frac{∂}{∂x}B(u)) whereA(s) = ∫¹_0a(σ)dσ, B(s) = ∫¹_0b(σ)dσ with a(s) ≥ 0, b(s) ≥ 0. We prove the existence of BV solutions under the much general structural conditions lim_{s → + ∞} A(s) = +∞, lim_{s → - ∞} A(s) = -∞ Moreover, we show the uniqueness without any structural conditions.
Yin Jingxue. (1990). On a Class of Quasilinear Parabolic Equations of Second Order with Double-degeneracy.
Journal of Partial Differential Equations. 3 (4).
49-64.
doi:
Copy to clipboard