- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Periodic Solutions to Porous Media Equations of Parabolic-elliptic Type
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-3-63,
author = {N.Kenmochi , D.Kröner and M.Kubo },
title = {Periodic Solutions to Porous Media Equations of Parabolic-elliptic Type},
journal = {Journal of Partial Differential Equations},
year = {1990},
volume = {3},
number = {3},
pages = {63--77},
abstract = { This paper is concerned with a equation, which is a model of filtration in partially saturated porous media, with mixed boundary condition of Dirichlet-Neumann type {∂_tb(u) - ∇ • a [∇u + k(b(u))] = f \qquad in \quad (0, ∞) × Ω u = h(t, x) \qquad on \quad (0, ∞) × Γ_0 v • a [∇u + k(b(u))] = g(t, x) \qquad on \quad (0, ∞) × Γ_1 We have proved that there exists one and only one periodic solution of the problem under the data f, g and h with same period. Moreover, we have proved that the unique periodic solution ω is asymptotically statble in the sense that for any solution u of the problem b(u(t)) - b(ω(t)) → 0\qquad in L²(Ω) as t → ∞.},
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5807.html}
}
TY - JOUR
T1 - Periodic Solutions to Porous Media Equations of Parabolic-elliptic Type
AU - N.Kenmochi , D.Kröner & M.Kubo
JO - Journal of Partial Differential Equations
VL - 3
SP - 63
EP - 77
PY - 1990
DA - 1990/03
SN - 3
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5807.html
KW - Filtration equation
KW - periodic solutions
KW - asymptotic stability
AB - This paper is concerned with a equation, which is a model of filtration in partially saturated porous media, with mixed boundary condition of Dirichlet-Neumann type {∂_tb(u) - ∇ • a [∇u + k(b(u))] = f \qquad in \quad (0, ∞) × Ω u = h(t, x) \qquad on \quad (0, ∞) × Γ_0 v • a [∇u + k(b(u))] = g(t, x) \qquad on \quad (0, ∞) × Γ_1 We have proved that there exists one and only one periodic solution of the problem under the data f, g and h with same period. Moreover, we have proved that the unique periodic solution ω is asymptotically statble in the sense that for any solution u of the problem b(u(t)) - b(ω(t)) → 0\qquad in L²(Ω) as t → ∞.
N.Kenmochi , D.Kröner and M.Kubo . (1990). Periodic Solutions to Porous Media Equations of Parabolic-elliptic Type.
Journal of Partial Differential Equations. 3 (3).
63-77.
doi:
Copy to clipboard