- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
The First Boundary Value Problem for General Parabolic Monge-Ampere Equation
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-3-1,
author = {Wang Guanglie, Wang Wei},
title = {The First Boundary Value Problem for General Parabolic Monge-Ampere Equation},
journal = {Journal of Partial Differential Equations},
year = {1990},
volume = {3},
number = {2},
pages = {1--15},
abstract = { In this note we consider the first boundary value problem for a general parabolic Monge-Ampere equation u_t - log det(D_{ij}u) = f(x, t, u,D_2u) in Q, \quad u = φ(x, t) on ∂, Q It is proved that there exists a unique convex in x solution to the problem from C^{1+β,2+β/2}(\overline{Q}) under certain structure aod smoothness conditions (H3) - (H7).},
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5794.html}
}
TY - JOUR
T1 - The First Boundary Value Problem for General Parabolic Monge-Ampere Equation
AU - Wang Guanglie, Wang Wei
JO - Journal of Partial Differential Equations
VL - 2
SP - 1
EP - 15
PY - 1990
DA - 1990/03
SN - 3
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5794.html
KW - General parabolic Mange-Ampere equation
KW - first boundary value problem
KW - classical solution
AB - In this note we consider the first boundary value problem for a general parabolic Monge-Ampere equation u_t - log det(D_{ij}u) = f(x, t, u,D_2u) in Q, \quad u = φ(x, t) on ∂, Q It is proved that there exists a unique convex in x solution to the problem from C^{1+β,2+β/2}(\overline{Q}) under certain structure aod smoothness conditions (H3) - (H7).
Wang Guanglie, Wang Wei. (1990). The First Boundary Value Problem for General Parabolic Monge-Ampere Equation.
Journal of Partial Differential Equations. 3 (2).
1-15.
doi:
Copy to clipboard