- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Initial-boundary-value Problem for a Degenerate Quasilinear Parabolic Equation of Order 2m
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-3-13,
author = {Cao Zhenchao, Gu Liankun},
title = {Initial-boundary-value Problem for a Degenerate Quasilinear Parabolic Equation of Order 2m},
journal = {Journal of Partial Differential Equations},
year = {1990},
volume = {3},
number = {1},
pages = {13--20},
abstract = { In this paper we consider the initial-boundary value problem for the higher-order degenerate quasilinear parabolic equation \frac{∂u(x, t)}{∂t} + Σ_{|α|≤M}(-1)^{|α|}D^αA_α(x, t, δu, D^mu) = 0 Under some structural conditions for A_α(x, t, δu, D^mu), existence and uniqueness theorem are proved by applying variational operator theory and Galërkin method.},
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5787.html}
}
TY - JOUR
T1 - Initial-boundary-value Problem for a Degenerate Quasilinear Parabolic Equation of Order 2m
AU - Cao Zhenchao, Gu Liankun
JO - Journal of Partial Differential Equations
VL - 1
SP - 13
EP - 20
PY - 1990
DA - 1990/03
SN - 3
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5787.html
KW - Higher-order degenerate equation
KW - semibounded-variational operator
KW - Galërkin method
AB - In this paper we consider the initial-boundary value problem for the higher-order degenerate quasilinear parabolic equation \frac{∂u(x, t)}{∂t} + Σ_{|α|≤M}(-1)^{|α|}D^αA_α(x, t, δu, D^mu) = 0 Under some structural conditions for A_α(x, t, δu, D^mu), existence and uniqueness theorem are proved by applying variational operator theory and Galërkin method.
Cao Zhenchao, Gu Liankun. (1990). Initial-boundary-value Problem for a Degenerate Quasilinear Parabolic Equation of Order 2m.
Journal of Partial Differential Equations. 3 (1).
13-20.
doi:
Copy to clipboard