- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Uniqueness of Solution of the Initial Value Problem for ut=ΔUm-up
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-4-89,
author = {Zhao Junning, Du Zhongfu},
title = {Uniqueness of Solution of the Initial Value Problem for ut=ΔUm-up},
journal = {Journal of Partial Differential Equations},
year = {1991},
volume = {4},
number = {3},
pages = {89--96},
abstract = { The uniqueness of solution of the Cauchy problem u_t = Δu^m - u^p, \qquad S_T = R^n × (0, T) u(x, 0) = Φ(x), \qquad × ∈ R^n is obtained. Where n ≥ 1, m, p > 0, Φ(x) ∈ L^∞(R^n), Φ(x) ≥ 0.},
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5778.html}
}
TY - JOUR
T1 - Uniqueness of Solution of the Initial Value Problem for ut=ΔUm-up
AU - Zhao Junning, Du Zhongfu
JO - Journal of Partial Differential Equations
VL - 3
SP - 89
EP - 96
PY - 1991
DA - 1991/04
SN - 4
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5778.html
KW - Uniqueness of solution
KW - initial value problem
AB - The uniqueness of solution of the Cauchy problem u_t = Δu^m - u^p, \qquad S_T = R^n × (0, T) u(x, 0) = Φ(x), \qquad × ∈ R^n is obtained. Where n ≥ 1, m, p > 0, Φ(x) ∈ L^∞(R^n), Φ(x) ≥ 0.
Zhao Junning, Du Zhongfu. (1991). Uniqueness of Solution of the Initial Value Problem for ut=ΔUm-up.
Journal of Partial Differential Equations. 4 (3).
89-96.
doi:
Copy to clipboard