- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Travelling Wave Front Solutions for Reaction-diffusion Systems
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-4-1,
author = {Li Zhengyuan, Ye Qixiao},
title = {Travelling Wave Front Solutions for Reaction-diffusion Systems},
journal = {Journal of Partial Differential Equations},
year = {1991},
volume = {4},
number = {3},
pages = {1--14},
abstract = { In this paper by using upper-lower solution method, under appropriate assumptions on f and g the existence of travelling wave front solutions for the following reaction-diffusion system is proved: {u_t - u_{xx}, = f(u,v) v_t - v_{xx} = g(u, v) As an application, the necessary and sufficient condition of the existence of monotone solutions for the boundary value problem {u" + cu' + u(1 - u- rv) = 0 v" + cv' - buv = 0 u(-∞) = v(+∞) = 0 u(+∞) = v(-∞) = 1 where 0 < r < 1, 0 < b < \frac{1 - r}{r} are known constants and c is unknown constant to be obtained.},
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5771.html}
}
TY - JOUR
T1 - Travelling Wave Front Solutions for Reaction-diffusion Systems
AU - Li Zhengyuan, Ye Qixiao
JO - Journal of Partial Differential Equations
VL - 3
SP - 1
EP - 14
PY - 1991
DA - 1991/04
SN - 4
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5771.html
KW - Reaction-diffusion system
KW - travelling wave front solutions
KW - upperlower solution method
KW - B-Z reaction
AB - In this paper by using upper-lower solution method, under appropriate assumptions on f and g the existence of travelling wave front solutions for the following reaction-diffusion system is proved: {u_t - u_{xx}, = f(u,v) v_t - v_{xx} = g(u, v) As an application, the necessary and sufficient condition of the existence of monotone solutions for the boundary value problem {u" + cu' + u(1 - u- rv) = 0 v" + cv' - buv = 0 u(-∞) = v(+∞) = 0 u(+∞) = v(-∞) = 1 where 0 < r < 1, 0 < b < \frac{1 - r}{r} are known constants and c is unknown constant to be obtained.
Li Zhengyuan, Ye Qixiao. (1991). Travelling Wave Front Solutions for Reaction-diffusion Systems.
Journal of Partial Differential Equations. 4 (3).
1-14.
doi:
Copy to clipboard