- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Nontrivial Solutions for Some Semilinear Elliptic Equations with Critical Sobolev Exponents
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-4-77,
author = {Wang Chuanfang, Xue Ruying},
title = {Nontrivial Solutions for Some Semilinear Elliptic Equations with Critical Sobolev Exponents},
journal = {Journal of Partial Differential Equations},
year = {1991},
volume = {4},
number = {1},
pages = {77--96},
abstract = { Let Ω be a bounded domain in R^4(n ≥ 4) with smooth boundary ∂Ω. We discuss the existence of nontrivial solutions of the Dirichlet problem {- Δu = a(x) |u|^{4/(a-2)}u + λu + g(x, u), \quad x ∈ Ω u = 0, \quad x ∈ ∂Ω where a(x) is a smooth function which is nonnegative on \overline{Ω} and positive somewhere, λ> 0 and λ ∉ σ(-Δ). We weaken the conditions on a(x) that are generally assumed in other papers dealing with this problem.},
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5763.html}
}
TY - JOUR
T1 - Nontrivial Solutions for Some Semilinear Elliptic Equations with Critical Sobolev Exponents
AU - Wang Chuanfang, Xue Ruying
JO - Journal of Partial Differential Equations
VL - 1
SP - 77
EP - 96
PY - 1991
DA - 1991/04
SN - 4
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5763.html
KW - Semilinear elliptic equation
KW - Sobolev exponent
KW - Critical value
KW - Critical point
KW - (P • S) condition
AB - Let Ω be a bounded domain in R^4(n ≥ 4) with smooth boundary ∂Ω. We discuss the existence of nontrivial solutions of the Dirichlet problem {- Δu = a(x) |u|^{4/(a-2)}u + λu + g(x, u), \quad x ∈ Ω u = 0, \quad x ∈ ∂Ω where a(x) is a smooth function which is nonnegative on \overline{Ω} and positive somewhere, λ> 0 and λ ∉ σ(-Δ). We weaken the conditions on a(x) that are generally assumed in other papers dealing with this problem.
Wang Chuanfang, Xue Ruying. (1991). Nontrivial Solutions for Some Semilinear Elliptic Equations with Critical Sobolev Exponents.
Journal of Partial Differential Equations. 4 (1).
77-96.
doi:
Copy to clipboard