- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Classical Solution to the Electropainting Problem
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-4-65,
author = {Chen Qihong},
title = {Classical Solution to the Electropainting Problem},
journal = {Journal of Partial Differential Equations},
year = {1991},
volume = {4},
number = {1},
pages = {65--76},
abstract = { The mathematical modelling of the electrodeposition phenomenon leads to a linear elliptic partial differential equation subject to nonlinear evolutionary mixed boundary conditions. ln this paper, the existence, uniqueness and regularity of classical solution are proved for the electropainting problem when “dissolution current” is zero.},
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5762.html}
}
TY - JOUR
T1 - Classical Solution to the Electropainting Problem
AU - Chen Qihong
JO - Journal of Partial Differential Equations
VL - 1
SP - 65
EP - 76
PY - 1991
DA - 1991/04
SN - 4
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5762.html
KW - electropainting problem
KW - classical solution
AB - The mathematical modelling of the electrodeposition phenomenon leads to a linear elliptic partial differential equation subject to nonlinear evolutionary mixed boundary conditions. ln this paper, the existence, uniqueness and regularity of classical solution are proved for the electropainting problem when “dissolution current” is zero.
Chen Qihong. (1991). Classical Solution to the Electropainting Problem.
Journal of Partial Differential Equations. 4 (1).
65-76.
doi:
Copy to clipboard