- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Backlund Transformations for the Isospectral and Non-isospectral Matrix Kdv Hierarchies
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-5-59,
author = {Song Jingping, Tian Chou and Zhang Youjin},
title = {Backlund Transformations for the Isospectral and Non-isospectral Matrix Kdv Hierarchies},
journal = {Journal of Partial Differential Equations},
year = {1992},
volume = {5},
number = {4},
pages = {59--65},
abstract = { By transforming the usual Lax pairs of isospectral and non-isospectral matrix Kdv hierarchies into Lax pairs Riccati form, a unified explicit from of Backlund transformations and superposition formulas for these two kinds of hierarchies of equations can be ohtaincd.},
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5754.html}
}
TY - JOUR
T1 - Backlund Transformations for the Isospectral and Non-isospectral Matrix Kdv Hierarchies
AU - Song Jingping, Tian Chou & Zhang Youjin
JO - Journal of Partial Differential Equations
VL - 4
SP - 59
EP - 65
PY - 1992
DA - 1992/05
SN - 5
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5754.html
KW - Backlund transformation
KW - noncommutativity of matrix
KW - Lax pairs
AB - By transforming the usual Lax pairs of isospectral and non-isospectral matrix Kdv hierarchies into Lax pairs Riccati form, a unified explicit from of Backlund transformations and superposition formulas for these two kinds of hierarchies of equations can be ohtaincd.
Song Jingping, Tian Chou and Zhang Youjin. (1992). Backlund Transformations for the Isospectral and Non-isospectral Matrix Kdv Hierarchies.
Journal of Partial Differential Equations. 5 (4).
59-65.
doi:
Copy to clipboard