- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
The Obstacle Problems for Second Order Fully Nonlinear Elliptic Equations with Neumann Boundary Conditions
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-5-33,
author = {Bao Jiguang},
title = {The Obstacle Problems for Second Order Fully Nonlinear Elliptic Equations with Neumann Boundary Conditions},
journal = {Journal of Partial Differential Equations},
year = {1992},
volume = {5},
number = {3},
pages = {33--45},
abstract = { In this paper we prove the existence theorem of the strong solutions to the obstacle problems for second order fully nonlinear elliptic equations with the Neumann boundary conditions F(x, u, Du, D²u) ≥ 0, x ∈ Ω u ≤ g, x ∈ Ω (u - g)F(x, u, Du, D²u) = 0, x ∈ Ω D_vu = φ(x, u), x ∈ ∂Ω where F(x, z, p, r) satisfies the natural structure conditions and is concave with respect to r, p, and φ(x, z) is nondecreasing in z, and g(x) satisfies the consistency condition.},
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5743.html}
}
TY - JOUR
T1 - The Obstacle Problems for Second Order Fully Nonlinear Elliptic Equations with Neumann Boundary Conditions
AU - Bao Jiguang
JO - Journal of Partial Differential Equations
VL - 3
SP - 33
EP - 45
PY - 1992
DA - 1992/05
SN - 5
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5743.html
KW - Obstacle problems
KW - Neumann boundary conditions
KW - logarithmic modulus of semicontinuity
KW - global second derivative estimates
AB - In this paper we prove the existence theorem of the strong solutions to the obstacle problems for second order fully nonlinear elliptic equations with the Neumann boundary conditions F(x, u, Du, D²u) ≥ 0, x ∈ Ω u ≤ g, x ∈ Ω (u - g)F(x, u, Du, D²u) = 0, x ∈ Ω D_vu = φ(x, u), x ∈ ∂Ω where F(x, z, p, r) satisfies the natural structure conditions and is concave with respect to r, p, and φ(x, z) is nondecreasing in z, and g(x) satisfies the consistency condition.
Bao Jiguang. (1992). The Obstacle Problems for Second Order Fully Nonlinear Elliptic Equations with Neumann Boundary Conditions.
Journal of Partial Differential Equations. 5 (3).
33-45.
doi:
Copy to clipboard