- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Life-span of Classical Solutions to Nonlinear Wave Equations in Two-space-dimensions II
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-6-17,
author = {Li Tatsien, Zhou Yi},
title = {Life-span of Classical Solutions to Nonlinear Wave Equations in Two-space-dimensions II},
journal = {Journal of Partial Differential Equations},
year = {1993},
volume = {6},
number = {1},
pages = {17--38},
abstract = { In two-space-dimensional case we get the sharp lower bound of the life-span of classical solutions to the Cauchy problem with small initial data for fully nonlinear wave equations of the form ◻u = F (u, Du, D_zDu) in which F(\hat{λ}) = O(|\hat{λ}|^{1+α}) with α = 2 in a neighbourhood of \hat{λ} = 0. The cases α = 1 and α ≥ 3 have been considered respectively in [1] and [2].},
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5698.html}
}
TY - JOUR
T1 - Life-span of Classical Solutions to Nonlinear Wave Equations in Two-space-dimensions II
AU - Li Tatsien, Zhou Yi
JO - Journal of Partial Differential Equations
VL - 1
SP - 17
EP - 38
PY - 1993
DA - 1993/06
SN - 6
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5698.html
KW - Life-span
KW - classical solution
KW - Cauchy problem
KW - nonlinear wave equation
AB - In two-space-dimensional case we get the sharp lower bound of the life-span of classical solutions to the Cauchy problem with small initial data for fully nonlinear wave equations of the form ◻u = F (u, Du, D_zDu) in which F(\hat{λ}) = O(|\hat{λ}|^{1+α}) with α = 2 in a neighbourhood of \hat{λ} = 0. The cases α = 1 and α ≥ 3 have been considered respectively in [1] and [2].
Li Tatsien, Zhou Yi. (1993). Life-span of Classical Solutions to Nonlinear Wave Equations in Two-space-dimensions II.
Journal of Partial Differential Equations. 6 (1).
17-38.
doi:
Copy to clipboard