- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Globally Smooth Solutions to an Inhomogeneous Quasilinear Hyperbolic System Arising in Chemical Engineering
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-7-351,
author = {Hu Jiaxin, Zhao Huijiang and Zhu Changjiang},
title = {Globally Smooth Solutions to an Inhomogeneous Quasilinear Hyperbolic System Arising in Chemical Engineering},
journal = {Journal of Partial Differential Equations},
year = {1994},
volume = {7},
number = {4},
pages = {351--358},
abstract = { In this paper we have obtained the existence of globally smooth solutions to an inhomogeneous nonstrictly hyperbolic system u_t - (v(1 - u))_x = 0, v_t + (\frac{1}{2}v² - c_0u)_x = f(u,v) by employing the characteristic method and the fixedpoint theorem in Banach spaces.},
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5693.html}
}
TY - JOUR
T1 - Globally Smooth Solutions to an Inhomogeneous Quasilinear Hyperbolic System Arising in Chemical Engineering
AU - Hu Jiaxin, Zhao Huijiang & Zhu Changjiang
JO - Journal of Partial Differential Equations
VL - 4
SP - 351
EP - 358
PY - 1994
DA - 1994/07
SN - 7
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5693.html
KW - Nonstrictly hyperbolic system
KW - characteristic curve
KW - fixed point theorem
AB - In this paper we have obtained the existence of globally smooth solutions to an inhomogeneous nonstrictly hyperbolic system u_t - (v(1 - u))_x = 0, v_t + (\frac{1}{2}v² - c_0u)_x = f(u,v) by employing the characteristic method and the fixedpoint theorem in Banach spaces.
Hu Jiaxin, Zhao Huijiang and Zhu Changjiang. (1994). Globally Smooth Solutions to an Inhomogeneous Quasilinear Hyperbolic System Arising in Chemical Engineering.
Journal of Partial Differential Equations. 7 (4).
351-358.
doi:
Copy to clipboard