- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Threshold Results for Semilinear Parabolic Equations with Nonlinear Boundary Conditions
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-8-273,
author = {Wang , Mingxin},
title = {Threshold Results for Semilinear Parabolic Equations with Nonlinear Boundary Conditions},
journal = {Journal of Partial Differential Equations},
year = {1995},
volume = {8},
number = {3},
pages = {273--280},
abstract = { This paper deals with the following semilinear parabolic equations with nonlinear boundary conditions u_t - Δu = f(u) - λu,x ∈ Ω, t > 0 \frac{∂u}{∂n} = g(u), \qquad x ∈ ∂Ω, t > 0 It is proved that every positive equilibrium solution is a threshold.},
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5659.html}
}
TY - JOUR
T1 - Threshold Results for Semilinear Parabolic Equations with Nonlinear Boundary Conditions
AU - Wang , Mingxin
JO - Journal of Partial Differential Equations
VL - 3
SP - 273
EP - 280
PY - 1995
DA - 1995/08
SN - 8
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5659.html
KW - Nonlinear boundary conditions
KW - threshold results
KW - upper and lower solutions
AB - This paper deals with the following semilinear parabolic equations with nonlinear boundary conditions u_t - Δu = f(u) - λu,x ∈ Ω, t > 0 \frac{∂u}{∂n} = g(u), \qquad x ∈ ∂Ω, t > 0 It is proved that every positive equilibrium solution is a threshold.
Wang , Mingxin. (1995). Threshold Results for Semilinear Parabolic Equations with Nonlinear Boundary Conditions.
Journal of Partial Differential Equations. 8 (3).
273-280.
doi:
Copy to clipboard