- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Local Boundedness of Minimizers of Anisotropic Functionals
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-8-242,
author = {Ding , Shijin},
title = {Local Boundedness of Minimizers of Anisotropic Functionals},
journal = {Journal of Partial Differential Equations},
year = {1995},
volume = {8},
number = {3},
pages = {242--248},
abstract = { Using the theory of anisotropic Sobolev spaces, we discuss in this paper the relation between the growth conditions and the local boundedness of minimizers of an anisotropic variational problem. This thoroughly explains the counterexample due to Giaquinta (1987). In the sense of local boundedness, we point out a critical index.},
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5656.html}
}
TY - JOUR
T1 - Local Boundedness of Minimizers of Anisotropic Functionals
AU - Ding , Shijin
JO - Journal of Partial Differential Equations
VL - 3
SP - 242
EP - 248
PY - 1995
DA - 1995/08
SN - 8
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5656.html
KW - Variational problem
KW - anisotropic Sobolev spaces
KW - local bounded ness
KW - minimizers
AB - Using the theory of anisotropic Sobolev spaces, we discuss in this paper the relation between the growth conditions and the local boundedness of minimizers of an anisotropic variational problem. This thoroughly explains the counterexample due to Giaquinta (1987). In the sense of local boundedness, we point out a critical index.
Ding , Shijin. (1995). Local Boundedness of Minimizers of Anisotropic Functionals.
Journal of Partial Differential Equations. 8 (3).
242-248.
doi:
Copy to clipboard