- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Global Resolvability for Quasilinear Hyperbolic Systems
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-8-55,
author = {Li , CaizhongZhu , Changjiang and Zhao , Huijiang},
title = {Global Resolvability for Quasilinear Hyperbolic Systems},
journal = {Journal of Partial Differential Equations},
year = {1995},
volume = {8},
number = {1},
pages = {55--63},
abstract = { In this paper, we consider the globally smooth solutions of diagonalizable systems consisted of n-equations. We give a sufficient condition which guarantees the global existence of smooth solutions. Tb.e techniques used in this paper can be applied to study the globally smooth (or continuous) solutions diagonalizable noostrict hyperbolic conversation laws.},
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5638.html}
}
TY - JOUR
T1 - Global Resolvability for Quasilinear Hyperbolic Systems
AU - Li , Caizhong
AU - Zhu , Changjiang
AU - Zhao , Huijiang
JO - Journal of Partial Differential Equations
VL - 1
SP - 55
EP - 63
PY - 1995
DA - 1995/08
SN - 8
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5638.html
KW - Global resolvability
KW - maximum principle
KW - function transformation
AB - In this paper, we consider the globally smooth solutions of diagonalizable systems consisted of n-equations. We give a sufficient condition which guarantees the global existence of smooth solutions. Tb.e techniques used in this paper can be applied to study the globally smooth (or continuous) solutions diagonalizable noostrict hyperbolic conversation laws.
Li , CaizhongZhu , Changjiang and Zhao , Huijiang. (1995). Global Resolvability for Quasilinear Hyperbolic Systems.
Journal of Partial Differential Equations. 8 (1).
55-63.
doi:
Copy to clipboard