- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Two-scale Convergence and Homogenization for a Class of Quasilinear Elliptic Equations
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-9-263,
author = {Xingyou Zhang },
title = {Two-scale Convergence and Homogenization for a Class of Quasilinear Elliptic Equations},
journal = {Journal of Partial Differential Equations},
year = {1996},
volume = {9},
number = {3},
pages = {263--276},
abstract = { By use of Fourier analysis techniques, we obtain some new properties of the almost-periodic functions and extend the two-scale convergence method in the homogenization theory to the case of almost-periodic oscillations. Then, we use some new techniques to study the homogenization for quasilinear elliptic equations with almostperiodic coefficients: div a(x,x/ε, u, Du) = f(x) in Ω and obtain the weak convergence and corrector result.},
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5626.html}
}
TY - JOUR
T1 - Two-scale Convergence and Homogenization for a Class of Quasilinear Elliptic Equations
AU - Xingyou Zhang
JO - Journal of Partial Differential Equations
VL - 3
SP - 263
EP - 276
PY - 1996
DA - 1996/09
SN - 9
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5626.html
KW - Partial differential equations
KW - homogenization
KW - weak convergence
KW - almost-periodic
KW - two-scale convergence
AB - By use of Fourier analysis techniques, we obtain some new properties of the almost-periodic functions and extend the two-scale convergence method in the homogenization theory to the case of almost-periodic oscillations. Then, we use some new techniques to study the homogenization for quasilinear elliptic equations with almostperiodic coefficients: div a(x,x/ε, u, Du) = f(x) in Ω and obtain the weak convergence and corrector result.
Xingyou Zhang . (1996). Two-scale Convergence and Homogenization for a Class of Quasilinear Elliptic Equations.
Journal of Partial Differential Equations. 9 (3).
263-276.
doi:
Copy to clipboard