- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Life-span of Classical Solutions of Nonlinear Hyperbolic Systems
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-9-221,
author = {Dexing Kong },
title = {Life-span of Classical Solutions of Nonlinear Hyperbolic Systems},
journal = {Journal of Partial Differential Equations},
year = {1996},
volume = {9},
number = {3},
pages = {221--236},
abstract = { In this paper, we give a lower bound for the life-span of classical solutions to the Cauchy problem for first order nonlinear hyperbolic systems with small initial data, which is sharp, and give its application to the system of one-dimensional gas dynamics; for the Cauchy problem of the system of one-dimensional gas dynamics with a kind of small oscillatory initial data, we obtain a precise estimate for the life-span of classical solutions.},
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5623.html}
}
TY - JOUR
T1 - Life-span of Classical Solutions of Nonlinear Hyperbolic Systems
AU - Dexing Kong
JO - Journal of Partial Differential Equations
VL - 3
SP - 221
EP - 236
PY - 1996
DA - 1996/09
SN - 9
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5623.html
KW - Nonlinear hyperbolic system
KW - Cauchy problem
KW - life-span
AB - In this paper, we give a lower bound for the life-span of classical solutions to the Cauchy problem for first order nonlinear hyperbolic systems with small initial data, which is sharp, and give its application to the system of one-dimensional gas dynamics; for the Cauchy problem of the system of one-dimensional gas dynamics with a kind of small oscillatory initial data, we obtain a precise estimate for the life-span of classical solutions.
Dexing Kong . (1996). Life-span of Classical Solutions of Nonlinear Hyperbolic Systems.
Journal of Partial Differential Equations. 9 (3).
221-236.
doi:
Copy to clipboard