- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
A New Completely Integrable Liouville's System Produced by the Ma Eigenvalue Problem
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-10-123,
author = {Sirendaoreji},
title = {A New Completely Integrable Liouville's System Produced by the Ma Eigenvalue Problem},
journal = {Journal of Partial Differential Equations},
year = {1997},
volume = {10},
number = {2},
pages = {123--135},
abstract = { Under the constraint between the potentials and eigenfunctions, the Ma eigenvalue problem is nonlinearized as a new completely integrablc Hamiltonian system (R^{2N}, dp∧dq, H): H = \frac{1}{2}α〈∧q,p〉 - \frac{1}{2}α_3 〈q,q〉 + \frac{α}{4α_3η} 〈q,p〉 〈p,p〉 The involutive solution of the high-order Ma equation is also presented. The new completely integrable Hamiltonian systems are obtained for DLW and Levi eigenvalue problems by reducing the remarkable Ma eigenvalue problem.},
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5586.html}
}
TY - JOUR
T1 - A New Completely Integrable Liouville's System Produced by the Ma Eigenvalue Problem
AU - Sirendaoreji
JO - Journal of Partial Differential Equations
VL - 2
SP - 123
EP - 135
PY - 1997
DA - 1997/10
SN - 10
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5586.html
KW - Ma eigenvalue problem
KW - Bargmann constraint
KW - involutive system
KW - involutive solution
AB - Under the constraint between the potentials and eigenfunctions, the Ma eigenvalue problem is nonlinearized as a new completely integrablc Hamiltonian system (R^{2N}, dp∧dq, H): H = \frac{1}{2}α〈∧q,p〉 - \frac{1}{2}α_3 〈q,q〉 + \frac{α}{4α_3η} 〈q,p〉 〈p,p〉 The involutive solution of the high-order Ma equation is also presented. The new completely integrable Hamiltonian systems are obtained for DLW and Levi eigenvalue problems by reducing the remarkable Ma eigenvalue problem.
Sirendaoreji. (1997). A New Completely Integrable Liouville's System Produced by the Ma Eigenvalue Problem.
Journal of Partial Differential Equations. 10 (2).
123-135.
doi:
Copy to clipboard