- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Remarks on Local Regularity for Two Space Dimensional Wave Maps
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-10-19,
author = {Yi Zhou },
title = {Remarks on Local Regularity for Two Space Dimensional Wave Maps},
journal = {Journal of Partial Differential Equations},
year = {1997},
volume = {10},
number = {1},
pages = {19--30},
abstract = { In this paper, we continue to study the equation ◻Φ^I+f^I(Φ,∂Φ) = 0 where ◻ = -∂²_t + Δ denotes the standard D' Alembertian in R^{2+1} and the nonlinear terms f have the form f^I = Σ_{JK}Γ^I_{JK}(Φ)Q_0(Φ^J,Φ^K) with Q_0(Φ,φ) = -∂_tΦ∂_tφ + Σ&sup_{i=1}∂_iΦ∂_tφ and Γ^I_{JK} being C^∞ function of Φ. In Y. Zhou [1], we showed that the initial value problem Φ(0,x) = Φ_0(x), ∂_tΦ(0,x) = Φ_1 (x) is locally well posed for Φ_0 ∈ H^{s+1}, Φ_1 ∈ H^s with s = \frac{1}{8}. Here, we shall further prove that the initial value problem is locally well posed for any s > 0.},
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5579.html}
}
TY - JOUR
T1 - Remarks on Local Regularity for Two Space Dimensional Wave Maps
AU - Yi Zhou
JO - Journal of Partial Differential Equations
VL - 1
SP - 19
EP - 30
PY - 1997
DA - 1997/10
SN - 10
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5579.html
KW - Wave equation
KW - local well-posedness
AB - In this paper, we continue to study the equation ◻Φ^I+f^I(Φ,∂Φ) = 0 where ◻ = -∂²_t + Δ denotes the standard D' Alembertian in R^{2+1} and the nonlinear terms f have the form f^I = Σ_{JK}Γ^I_{JK}(Φ)Q_0(Φ^J,Φ^K) with Q_0(Φ,φ) = -∂_tΦ∂_tφ + Σ&sup_{i=1}∂_iΦ∂_tφ and Γ^I_{JK} being C^∞ function of Φ. In Y. Zhou [1], we showed that the initial value problem Φ(0,x) = Φ_0(x), ∂_tΦ(0,x) = Φ_1 (x) is locally well posed for Φ_0 ∈ H^{s+1}, Φ_1 ∈ H^s with s = \frac{1}{8}. Here, we shall further prove that the initial value problem is locally well posed for any s > 0.
Yi Zhou . (1997). Remarks on Local Regularity for Two Space Dimensional Wave Maps.
Journal of Partial Differential Equations. 10 (1).
19-30.
doi:
Copy to clipboard