- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Global Existence and Blow-up for a Parabolic System with Nonlinear Boundary Conditions
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-11-231,
author = {Zhigui Lin },
title = {Global Existence and Blow-up for a Parabolic System with Nonlinear Boundary Conditions},
journal = {Journal of Partial Differential Equations},
year = {1998},
volume = {11},
number = {3},
pages = {231--244},
abstract = { This paper deals with the global existence and blow-up of positive solutions to the systems: u_t = ∇(u^∇u) + u¹ + v^a v_t = ∇(v^n∇v) + u^b + v^k in B_R × (0, T) \frac{∂u}{∂η} = u^αv^p, \frac{∂v}{∂η} = u^qv^β on S_R × (0, T) u(x, 0) = u_0(x), v(x, 0} = v_0(x) in B_R We prove that there exists a global classical positive solution if and only if l ≤ l, k ≤ 1, m + α ≤ 1, n + β ≤ 1, pq ≤ (1 - m - α)(1 - n - β),ab ≤ 1, qa ≤ (1 - n - β) and pb ≤ (1 - m - α).},
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5567.html}
}
TY - JOUR
T1 - Global Existence and Blow-up for a Parabolic System with Nonlinear Boundary Conditions
AU - Zhigui Lin
JO - Journal of Partial Differential Equations
VL - 3
SP - 231
EP - 244
PY - 1998
DA - 1998/11
SN - 11
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5567.html
KW - Parabolic system
KW - global existence
KW - blow-up
AB - This paper deals with the global existence and blow-up of positive solutions to the systems: u_t = ∇(u^∇u) + u¹ + v^a v_t = ∇(v^n∇v) + u^b + v^k in B_R × (0, T) \frac{∂u}{∂η} = u^αv^p, \frac{∂v}{∂η} = u^qv^β on S_R × (0, T) u(x, 0) = u_0(x), v(x, 0} = v_0(x) in B_R We prove that there exists a global classical positive solution if and only if l ≤ l, k ≤ 1, m + α ≤ 1, n + β ≤ 1, pq ≤ (1 - m - α)(1 - n - β),ab ≤ 1, qa ≤ (1 - n - β) and pb ≤ (1 - m - α).
Zhigui Lin . (1998). Global Existence and Blow-up for a Parabolic System with Nonlinear Boundary Conditions.
Journal of Partial Differential Equations. 11 (3).
231-244.
doi:
Copy to clipboard