- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Existence of C1-solutions to Certain Non-uniformly Degenerate Elliptic Equations
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-11-9,
author = {Junjie Lee },
title = {Existence of C1-solutions to Certain Non-uniformly Degenerate Elliptic Equations},
journal = {Journal of Partial Differential Equations},
year = {1998},
volume = {11},
number = {1},
pages = {9--24},
abstract = { We are concerned with the Dirichlet problem of {div A(x, Du) + B(z) = 0 \qquad in Ω u= u_0 \qquad \qquad on ∂ Ω Here Ω ⊂ R^N is a bounded domain, A(x, p) = (A¹ (x, p), ... >A^N (x, p}) satisfies min{|p|^{1+α}, |p|^{1+β}} ≤ A(x, p) ⋅ p ≤ α_0(|p|^{1+α}+|p|^{1+β}) with 0 < α ≤ β. We show that if A is Lipschitz, B and u_0 are bounded and β < max {\frac{N+2}{N}α + \frac{2}{N},α + 2}, then there exists a C¹-weak solution of (0.1).},
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5551.html}
}
TY - JOUR
T1 - Existence of C1-solutions to Certain Non-uniformly Degenerate Elliptic Equations
AU - Junjie Lee
JO - Journal of Partial Differential Equations
VL - 1
SP - 9
EP - 24
PY - 1998
DA - 1998/11
SN - 11
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5551.html
KW - Elliptic equation
KW - non-uniformly degenerate
AB - We are concerned with the Dirichlet problem of {div A(x, Du) + B(z) = 0 \qquad in Ω u= u_0 \qquad \qquad on ∂ Ω Here Ω ⊂ R^N is a bounded domain, A(x, p) = (A¹ (x, p), ... >A^N (x, p}) satisfies min{|p|^{1+α}, |p|^{1+β}} ≤ A(x, p) ⋅ p ≤ α_0(|p|^{1+α}+|p|^{1+β}) with 0 < α ≤ β. We show that if A is Lipschitz, B and u_0 are bounded and β < max {\frac{N+2}{N}α + \frac{2}{N},α + 2}, then there exists a C¹-weak solution of (0.1).
Junjie Lee . (1998). Existence of C1-solutions to Certain Non-uniformly Degenerate Elliptic Equations.
Journal of Partial Differential Equations. 11 (1).
9-24.
doi:
Copy to clipboard