- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
The Global Solution of the Scalar Nonconvex Conservation Law with Boundary Condition (continuation)
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-11-1,
author = {Tao Pan and Longwei Lin },
title = {The Global Solution of the Scalar Nonconvex Conservation Law with Boundary Condition (continuation)},
journal = {Journal of Partial Differential Equations},
year = {1998},
volume = {11},
number = {1},
pages = {1--8},
abstract = { Using the Kruskov's method [1], we show the uniqueness for the global weak solution of the initial-boundary value problem (1.1)-(1.3) (in the class of bounded and measurable functions).},
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5550.html}
}
TY - JOUR
T1 - The Global Solution of the Scalar Nonconvex Conservation Law with Boundary Condition (continuation)
AU - Tao Pan & Longwei Lin
JO - Journal of Partial Differential Equations
VL - 1
SP - 1
EP - 8
PY - 1998
DA - 1998/11
SN - 11
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5550.html
KW - Scalar conservation law
KW - boundary condition
KW - nonconvex
KW - uniqueness
AB - Using the Kruskov's method [1], we show the uniqueness for the global weak solution of the initial-boundary value problem (1.1)-(1.3) (in the class of bounded and measurable functions).
Tao Pan and Longwei Lin . (1998). The Global Solution of the Scalar Nonconvex Conservation Law with Boundary Condition (continuation).
Journal of Partial Differential Equations. 11 (1).
1-8.
doi:
Copy to clipboard