- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Quenching Versus Blow-up
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-13-243,
author = {Keng Deng and Chcnglin Zhao },
title = {Quenching Versus Blow-up},
journal = {Journal of Partial Differential Equations},
year = {2000},
volume = {13},
number = {3},
pages = {243--252},
abstract = { This paper is concerned with the semilinear heat equation u_t = Δu - u^{-q} in Ω × (0, T) under the nonlinear boundary condition \frac{∂u}{∂v} = u^p on ∂Ω × (0, T). Criteria for finite time quenching and blow-up are established, quenching and blow-up sets are discussed, and the rates of quenching and blow-up are obtained.},
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5511.html}
}
TY - JOUR
T1 - Quenching Versus Blow-up
AU - Keng Deng & Chcnglin Zhao
JO - Journal of Partial Differential Equations
VL - 3
SP - 243
EP - 252
PY - 2000
DA - 2000/08
SN - 13
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5511.html
KW - Reaction-diffusion equation
KW - finite time quenching and blow-up
KW - quenching and blow-up sets
KW - quenching and blow-up rates
AB - This paper is concerned with the semilinear heat equation u_t = Δu - u^{-q} in Ω × (0, T) under the nonlinear boundary condition \frac{∂u}{∂v} = u^p on ∂Ω × (0, T). Criteria for finite time quenching and blow-up are established, quenching and blow-up sets are discussed, and the rates of quenching and blow-up are obtained.
Keng Deng and Chcnglin Zhao . (2000). Quenching Versus Blow-up.
Journal of Partial Differential Equations. 13 (3).
243-252.
doi:
Copy to clipboard