- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Vortex Motion Law of an Evolutionary Ginzburg-Landau Equation in 2 Dimensions
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-14-71,
author = {Zuhan Liu },
title = {Vortex Motion Law of an Evolutionary Ginzburg-Landau Equation in 2 Dimensions},
journal = {Journal of Partial Differential Equations},
year = {2001},
volume = {14},
number = {1},
pages = {71--86},
abstract = { We study the asymptotic behavior of solutions to an evolutionary Ginzburg-Landau equation. We also study the dynamical law of Ginzburg-Landau vortices of this equation under the Neuman boundary conditions. Away from the vortices, we use some measure theoretic arguments used by F.H.Lin in [1] to show the strong convergence of solutions. This is a continuation of our earlier work [2].},
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5470.html}
}
TY - JOUR
T1 - Vortex Motion Law of an Evolutionary Ginzburg-Landau Equation in 2 Dimensions
AU - Zuhan Liu
JO - Journal of Partial Differential Equations
VL - 1
SP - 71
EP - 86
PY - 2001
DA - 2001/02
SN - 14
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5470.html
KW - Ginzburg-Landau equations
KW - vortex motion
KW - asymptotic behavior
KW - ε-regularity
AB - We study the asymptotic behavior of solutions to an evolutionary Ginzburg-Landau equation. We also study the dynamical law of Ginzburg-Landau vortices of this equation under the Neuman boundary conditions. Away from the vortices, we use some measure theoretic arguments used by F.H.Lin in [1] to show the strong convergence of solutions. This is a continuation of our earlier work [2].
Zuhan Liu . (2001). Vortex Motion Law of an Evolutionary Ginzburg-Landau Equation in 2 Dimensions.
Journal of Partial Differential Equations. 14 (1).
71-86.
doi:
Copy to clipboard