- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Ginzburg-Landau Vortices in Inhomogeneous Superconductors
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-15-45,
author = {Huaiyu Jian and Youde Wang },
title = {Ginzburg-Landau Vortices in Inhomogeneous Superconductors},
journal = {Journal of Partial Differential Equations},
year = {2002},
volume = {15},
number = {3},
pages = {45--60},
abstract = { We study the vortex convergence for an inhomogeneous Ginzburg-Landau equation, -Δu = ∈^{-2}u(a(x) - |u|²), and prove that the vortices are attracted to the minimum point b of a(x) as ∈ → 0. Moreover, we show that there exists a subsequence ∈ → 0 such that u_∈ converges to u strongly in H¹_{loc}(\overline{Ω} \ {b}).},
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5454.html}
}
TY - JOUR
T1 - Ginzburg-Landau Vortices in Inhomogeneous Superconductors
AU - Huaiyu Jian & Youde Wang
JO - Journal of Partial Differential Equations
VL - 3
SP - 45
EP - 60
PY - 2002
DA - 2002/08
SN - 15
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5454.html
KW - Vortex
KW - Ginzburg-Landau equation
KW - elliptic estimate
KW - H¹-strong convergence
AB - We study the vortex convergence for an inhomogeneous Ginzburg-Landau equation, -Δu = ∈^{-2}u(a(x) - |u|²), and prove that the vortices are attracted to the minimum point b of a(x) as ∈ → 0. Moreover, we show that there exists a subsequence ∈ → 0 such that u_∈ converges to u strongly in H¹_{loc}(\overline{Ω} \ {b}).
Huaiyu Jian and Youde Wang . (2002). Ginzburg-Landau Vortices in Inhomogeneous Superconductors.
Journal of Partial Differential Equations. 15 (3).
45-60.
doi:
Copy to clipboard