- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
The Periodic Initial Value Problem and Initial Value Problem for the Modified Boussinesq Approximation
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-15-57,
author = {Boling Guo and Yadong Shang },
title = {The Periodic Initial Value Problem and Initial Value Problem for the Modified Boussinesq Approximation},
journal = {Journal of Partial Differential Equations},
year = {2002},
volume = {15},
number = {2},
pages = {57--71},
abstract = { The Boussinesq approximation, where the viscosity depends polynomially on the shear rate,finds more and more frequent use in geological practice. In this paper, we consider the periodic initial value problem and initial value problem for this modified Boussinesq approximation with the viscous part of the stress tensor τ^v = τ(e)- 2μΔe, where the nonlinear function τ(e) satisfies τ_{ij}(e)e_{ij} ≥ C|e|^p or τ_{ij}(e)e_{ij} ≥ C(|e|²+|e|^p). The existence, uniqueness and regularity of the weak solution is proved for p > \frac{2n}{n + 2}.},
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5448.html}
}
TY - JOUR
T1 - The Periodic Initial Value Problem and Initial Value Problem for the Modified Boussinesq Approximation
AU - Boling Guo & Yadong Shang
JO - Journal of Partial Differential Equations
VL - 2
SP - 57
EP - 71
PY - 2002
DA - 2002/05
SN - 15
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5448.html
KW - non-Newtonian incompressible fluids
KW - Boussinesq approximation
KW - periodic initial value problem
KW - initial value problem
KW - weak solution
AB - The Boussinesq approximation, where the viscosity depends polynomially on the shear rate,finds more and more frequent use in geological practice. In this paper, we consider the periodic initial value problem and initial value problem for this modified Boussinesq approximation with the viscous part of the stress tensor τ^v = τ(e)- 2μΔe, where the nonlinear function τ(e) satisfies τ_{ij}(e)e_{ij} ≥ C|e|^p or τ_{ij}(e)e_{ij} ≥ C(|e|²+|e|^p). The existence, uniqueness and regularity of the weak solution is proved for p > \frac{2n}{n + 2}.
Boling Guo and Yadong Shang . (2002). The Periodic Initial Value Problem and Initial Value Problem for the Modified Boussinesq Approximation.
Journal of Partial Differential Equations. 15 (2).
57-71.
doi:
Copy to clipboard