- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Global Existence of Classical Solution with Small Initial Total Variation for Quasilinear Linearly Degenerate Hyperbolic Systems
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-16-321,
author = {Ping Yan },
title = {Global Existence of Classical Solution with Small Initial Total Variation for Quasilinear Linearly Degenerate Hyperbolic Systems},
journal = {Journal of Partial Differential Equations},
year = {2003},
volume = {16},
number = {4},
pages = {321--334},
abstract = { In this paper, the author proves the global existence of classical solution to the Cauchy problem with slowly decaying initial data with small initial total variation for general first order quasilinear linearly degenerate hyperbolic systems. This generalizes the corresponding result of A.Bressan for initial data with compact support.},
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5429.html}
}
TY - JOUR
T1 - Global Existence of Classical Solution with Small Initial Total Variation for Quasilinear Linearly Degenerate Hyperbolic Systems
AU - Ping Yan
JO - Journal of Partial Differential Equations
VL - 4
SP - 321
EP - 334
PY - 2003
DA - 2003/11
SN - 16
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5429.html
KW - Linear degeneracy
KW - small initial total variation
KW - slowly decaying initial data
KW - global classical solution
KW - quasilinear hyperbolic system
AB - In this paper, the author proves the global existence of classical solution to the Cauchy problem with slowly decaying initial data with small initial total variation for general first order quasilinear linearly degenerate hyperbolic systems. This generalizes the corresponding result of A.Bressan for initial data with compact support.
Ping Yan . (2003). Global Existence of Classical Solution with Small Initial Total Variation for Quasilinear Linearly Degenerate Hyperbolic Systems.
Journal of Partial Differential Equations. 16 (4).
321-334.
doi:
Copy to clipboard