- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Mean Curvature Ow of Graphs in Σ1 × Σ2
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-16-255,
author = {Jiayu Li and Ye Li },
title = {Mean Curvature Ow of Graphs in Σ1 × Σ2},
journal = {Journal of Partial Differential Equations},
year = {2003},
volume = {16},
number = {3},
pages = {255--265},
abstract = { Let Σ_1 and Σ_2 be m and n dimensional Riemannian manifolds of constant curvature respectively. We assume that w is a unit constant m-form in Σ_1 with respect to which Σ_0 is a graph. We set v = 〈e_1 ∧ … ∧ e_m, 〉), where {e_1, …, e_m} is a normal frame on Σ_t. Suppose that Σ_0 has bounded curvature. If v(x, 0) ≥ v0 > \frac{\sqrt{p}}{2} for all x, then the mean curvature flow has a global solution F under some suitable conditions on the curvatrue of Σ_1 and Σ_2.},
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5423.html}
}
TY - JOUR
T1 - Mean Curvature Ow of Graphs in Σ1 × Σ2
AU - Jiayu Li & Ye Li
JO - Journal of Partial Differential Equations
VL - 3
SP - 255
EP - 265
PY - 2003
DA - 2003/08
SN - 16
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5423.html
KW - Mean curvature flow
KW - m-dimensional graphs
AB - Let Σ_1 and Σ_2 be m and n dimensional Riemannian manifolds of constant curvature respectively. We assume that w is a unit constant m-form in Σ_1 with respect to which Σ_0 is a graph. We set v = 〈e_1 ∧ … ∧ e_m, 〉), where {e_1, …, e_m} is a normal frame on Σ_t. Suppose that Σ_0 has bounded curvature. If v(x, 0) ≥ v0 > \frac{\sqrt{p}}{2} for all x, then the mean curvature flow has a global solution F under some suitable conditions on the curvatrue of Σ_1 and Σ_2.
Jiayu Li and Ye Li . (2003). Mean Curvature Ow of Graphs in Σ1 × Σ2.
Journal of Partial Differential Equations. 16 (3).
255-265.
doi:
Copy to clipboard