- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Local Well-posedness of Interaction Equations for Short and Long Dispersive Waves
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-17-137,
author = {Zhaohui Huo and Boling Guo },
title = {Local Well-posedness of Interaction Equations for Short and Long Dispersive Waves},
journal = {Journal of Partial Differential Equations},
year = {2004},
volume = {17},
number = {2},
pages = {137--151},
abstract = { The well-posedness of the Cauchy problem for the system {i∂_tu + ∂²_xu = uv + |u|²u, t, x ∈ \mathbb{R}, ∂_tv + ∂_xΗ∂_xv = ∂_x|u|², u(0, x) = u_0(x), v(0, x) = v_0(x), is considered. It is proved that there exists a unique local solution (u(x, t), v(x, t)) ∈ C([0, T);H^s) ×C([0, T);H^{s-\frac{1}{2}}) for any initial data (u_0, v_0) ∈ H^s(\mathbb{R}) ×H^{s-\frac{1}{2}} (\mathbb{R})(s ≥ \frac{1}{4}) and the solution depends continuously on the initial data.},
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5382.html}
}
TY - JOUR
T1 - Local Well-posedness of Interaction Equations for Short and Long Dispersive Waves
AU - Zhaohui Huo & Boling Guo
JO - Journal of Partial Differential Equations
VL - 2
SP - 137
EP - 151
PY - 2004
DA - 2004/05
SN - 17
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5382.html
KW - Short and long dispersive waves
KW - the Fourier restriction norm
KW - the Smoothing effects
AB - The well-posedness of the Cauchy problem for the system {i∂_tu + ∂²_xu = uv + |u|²u, t, x ∈ \mathbb{R}, ∂_tv + ∂_xΗ∂_xv = ∂_x|u|², u(0, x) = u_0(x), v(0, x) = v_0(x), is considered. It is proved that there exists a unique local solution (u(x, t), v(x, t)) ∈ C([0, T);H^s) ×C([0, T);H^{s-\frac{1}{2}}) for any initial data (u_0, v_0) ∈ H^s(\mathbb{R}) ×H^{s-\frac{1}{2}} (\mathbb{R})(s ≥ \frac{1}{4}) and the solution depends continuously on the initial data.
Zhaohui Huo and Boling Guo . (2004). Local Well-posedness of Interaction Equations for Short and Long Dispersive Waves.
Journal of Partial Differential Equations. 17 (2).
137-151.
doi:
Copy to clipboard