- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Asymptotics of Initial Boundary Value Problems of Bipolar Hydrodynamic Model for Semiconductors
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-17-57,
author = {Qiangchang Ju },
title = {Asymptotics of Initial Boundary Value Problems of Bipolar Hydrodynamic Model for Semiconductors},
journal = {Journal of Partial Differential Equations},
year = {2004},
volume = {17},
number = {1},
pages = {57--70},
abstract = { In this paper, we study the asymptotic behavior of the solutions to the bipolar hydrodynamic model with Dirichlet boundary conditions. It is shown that the initial boundary problem of the model admits a global smooth solution which decays to the steady state exponentially fast.},
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5376.html}
}
TY - JOUR
T1 - Asymptotics of Initial Boundary Value Problems of Bipolar Hydrodynamic Model for Semiconductors
AU - Qiangchang Ju
JO - Journal of Partial Differential Equations
VL - 1
SP - 57
EP - 70
PY - 2004
DA - 2004/02
SN - 17
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5376.html
KW - Bipolar hydrodynamic model
KW - semiconductors
KW - asymptotics
KW - smooth solution
AB - In this paper, we study the asymptotic behavior of the solutions to the bipolar hydrodynamic model with Dirichlet boundary conditions. It is shown that the initial boundary problem of the model admits a global smooth solution which decays to the steady state exponentially fast.
Qiangchang Ju . (2004). Asymptotics of Initial Boundary Value Problems of Bipolar Hydrodynamic Model for Semiconductors.
Journal of Partial Differential Equations. 17 (1).
57-70.
doi:
Copy to clipboard