- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Existence of Periodic Solutions for 3-D Complex Ginzberg-Landau Equation
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-17-12,
author = {Donglong Li and Boling Guo },
title = {Existence of Periodic Solutions for 3-D Complex Ginzberg-Landau Equation},
journal = {Journal of Partial Differential Equations},
year = {2004},
volume = {17},
number = {1},
pages = {12--28},
abstract = { In this paper, the authors consider complex Ginzburg-Landau equation (CGL) in three spatial dimensions u_t = ρu + (1 + iϒ)Δu - (1 + iμ) |u|^{2σ u + f, where u is an unknown complex-value function defined in 3+1 dimensional space-time R^{3+1}, Δ is a Laplacian in R^3, Δ > 0, ϒ, μ are real parameters, Ω ∈ R^3 is a bounded domain. By using the method of Galërkin and Faedo-Schauder fix point theorem we prove the existence of approximate solution uN of the problem. By establishing the uniform boundedness of the norm ||uN|| and the standard compactness arguments, the convergence of the approximate solutions is considered. Moreover, the existence of the periodic solution is obtained .},
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5373.html}
}
TY - JOUR
T1 - Existence of Periodic Solutions for 3-D Complex Ginzberg-Landau Equation
AU - Donglong Li & Boling Guo
JO - Journal of Partial Differential Equations
VL - 1
SP - 12
EP - 28
PY - 2004
DA - 2004/02
SN - 17
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5373.html
KW - complex Ginzburg-Landau equation
KW - Galërkin method
KW - approximate solution
KW - time periodic solution
AB - In this paper, the authors consider complex Ginzburg-Landau equation (CGL) in three spatial dimensions u_t = ρu + (1 + iϒ)Δu - (1 + iμ) |u|^{2σ u + f, where u is an unknown complex-value function defined in 3+1 dimensional space-time R^{3+1}, Δ is a Laplacian in R^3, Δ > 0, ϒ, μ are real parameters, Ω ∈ R^3 is a bounded domain. By using the method of Galërkin and Faedo-Schauder fix point theorem we prove the existence of approximate solution uN of the problem. By establishing the uniform boundedness of the norm ||uN|| and the standard compactness arguments, the convergence of the approximate solutions is considered. Moreover, the existence of the periodic solution is obtained .
Donglong Li and Boling Guo . (2004). Existence of Periodic Solutions for 3-D Complex Ginzberg-Landau Equation.
Journal of Partial Differential Equations. 17 (1).
12-28.
doi:
Copy to clipboard