- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Some Entropy Inequalities for a Quasilinear Degenerate Hyperbolic Equation
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-18-289,
author = {Hongjun Yuan and Xiaojing Xu },
title = {Some Entropy Inequalities for a Quasilinear Degenerate Hyperbolic Equation},
journal = {Journal of Partial Differential Equations},
year = {2005},
volume = {18},
number = {4},
pages = {289--303},
abstract = {
The aim of this paper is to discuss some degenerate hyperbolic equation u_t + φ(u)_x = 0, where φ ∈ C¹(R \ {0}) ∩ C²(R \ {0}) is a nondecreasing function in R, where R = (-∞, +∞). Some entropy inequalities are obtained and can be applied to study the existence of local BV solutions of the above equation with local finite measures as initial conditions.
}, issn = {2079-732X}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jpde/5364.html} }
TY - JOUR
T1 - Some Entropy Inequalities for a Quasilinear Degenerate Hyperbolic Equation
AU - Hongjun Yuan & Xiaojing Xu
JO - Journal of Partial Differential Equations
VL - 4
SP - 289
EP - 303
PY - 2005
DA - 2005/11
SN - 18
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5364.html
KW - Quasilinear hyperbolic equations
KW - entropy inequality
AB -
The aim of this paper is to discuss some degenerate hyperbolic equation u_t + φ(u)_x = 0, where φ ∈ C¹(R \ {0}) ∩ C²(R \ {0}) is a nondecreasing function in R, where R = (-∞, +∞). Some entropy inequalities are obtained and can be applied to study the existence of local BV solutions of the above equation with local finite measures as initial conditions.
Hongjun Yuan and Xiaojing Xu . (2005). Some Entropy Inequalities for a Quasilinear Degenerate Hyperbolic Equation.
Journal of Partial Differential Equations. 18 (4).
289-303.
doi:
Copy to clipboard