- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Cited by
- BibTex
- RIS
- TXT
The problem of the existence of time-periodic flows in infinite cylindrical pipes in correspondence to any given, time-periodic, total flux, was solved only quite recently in [1]. In this last reference we solved the above problem for flows under the non-slip boundary condition as a corollary of a more general result. Here we want to show that the abstract theorem proved in [1] applies as well to the solutions of the well known slip (or Navier) boundary condition (1.7) or to the mixed boundary condition (1.14). Actually, the argument applies for solutions of many other boundary value problems. This paper is a continuation of reference [1], to which the reader is referred for some notation and results.
}, issn = {2079-732X}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jpde/5339.html} }The problem of the existence of time-periodic flows in infinite cylindrical pipes in correspondence to any given, time-periodic, total flux, was solved only quite recently in [1]. In this last reference we solved the above problem for flows under the non-slip boundary condition as a corollary of a more general result. Here we want to show that the abstract theorem proved in [1] applies as well to the solutions of the well known slip (or Navier) boundary condition (1.7) or to the mixed boundary condition (1.14). Actually, the argument applies for solutions of many other boundary value problems. This paper is a continuation of reference [1], to which the reader is referred for some notation and results.