- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Maximum Principles of Nonhomogeneous Subelliptic p-Laplace Equations and Applications
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-19-289,
author = {Haifeng Liu and Pengcheng Niu },
title = {Maximum Principles of Nonhomogeneous Subelliptic p-Laplace Equations and Applications},
journal = {Journal of Partial Differential Equations},
year = {2006},
volume = {19},
number = {4},
pages = {289--303},
abstract = {
Maximum principles for weak solutions of nonhomogeneous subelliptic p-Laplace equations related to smooth vector fields {X_j} satisfying the Hömander condition are proved by the choice of suitable test functions and the adaption of the classical Moser iteration method. Some applications are given in this paper.
}, issn = {2079-732X}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jpde/5333.html} }
TY - JOUR
T1 - Maximum Principles of Nonhomogeneous Subelliptic p-Laplace Equations and Applications
AU - Haifeng Liu & Pengcheng Niu
JO - Journal of Partial Differential Equations
VL - 4
SP - 289
EP - 303
PY - 2006
DA - 2006/11
SN - 19
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5333.html
KW - Subelliptic p-Laplacian
KW - maximum principle
KW - Harnack inequality
AB -
Maximum principles for weak solutions of nonhomogeneous subelliptic p-Laplace equations related to smooth vector fields {X_j} satisfying the Hömander condition are proved by the choice of suitable test functions and the adaption of the classical Moser iteration method. Some applications are given in this paper.
Haifeng Liu and Pengcheng Niu . (2006). Maximum Principles of Nonhomogeneous Subelliptic p-Laplace Equations and Applications.
Journal of Partial Differential Equations. 19 (4).
289-303.
doi:
Copy to clipboard