- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
The Cauchy Problem of the Modified Kawahara Equation
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-19-126,
author = {Guixiang Xu },
title = {The Cauchy Problem of the Modified Kawahara Equation},
journal = {Journal of Partial Differential Equations},
year = {2006},
volume = {19},
number = {2},
pages = {126--146},
abstract = {
In this paper, we consider the local and global solutions for the modified Kawahara equation with data in the homogeneous and nonhomogeneous Besov space and the scattering result for small data. The techniques to be used are adapted from Kato's smoothing effect and the maximal function (in time) estimate for the free Kawahara operator e^{-ϒ^{t∂^5_x}}.
}, issn = {2079-732X}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jpde/5324.html} }
TY - JOUR
T1 - The Cauchy Problem of the Modified Kawahara Equation
AU - Guixiang Xu
JO - Journal of Partial Differential Equations
VL - 2
SP - 126
EP - 146
PY - 2006
DA - 2006/05
SN - 19
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5324.html
KW - Modified Kawahara equation
KW - Cauchy problem
KW - Littlewood-Paley decomposition
KW - Besov space
AB -
In this paper, we consider the local and global solutions for the modified Kawahara equation with data in the homogeneous and nonhomogeneous Besov space and the scattering result for small data. The techniques to be used are adapted from Kato's smoothing effect and the maximal function (in time) estimate for the free Kawahara operator e^{-ϒ^{t∂^5_x}}.
Guixiang Xu . (2006). The Cauchy Problem of the Modified Kawahara Equation.
Journal of Partial Differential Equations. 19 (2).
126-146.
doi:
Copy to clipboard