- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Global Weakly Discontinuous Solutions to a Kind of Mixed Initial-boundary Value Problem for Inhomogeneous Quasilinear Hyperbolic Systems
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-20-365,
author = {Fei Guo },
title = {Global Weakly Discontinuous Solutions to a Kind of Mixed Initial-boundary Value Problem for Inhomogeneous Quasilinear Hyperbolic Systems},
journal = {Journal of Partial Differential Equations},
year = {2007},
volume = {20},
number = {4},
pages = {365--384},
abstract = { In this paper we study the mixed initial-boundary value problem for inhomogeneous quasilinear hyperbolic systems in the domain D = {(t, x) | t ≥ 0, x ≥ 0}. Under the assumption that the source term satisfies the matching condition, a sufficient condition to guarantee the existence and uniqueness of global weakly discontinuous solution is given.},
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5315.html}
}
TY - JOUR
T1 - Global Weakly Discontinuous Solutions to a Kind of Mixed Initial-boundary Value Problem for Inhomogeneous Quasilinear Hyperbolic Systems
AU - Fei Guo
JO - Journal of Partial Differential Equations
VL - 4
SP - 365
EP - 384
PY - 2007
DA - 2007/11
SN - 20
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5315.html
KW - CInhomogeneous quasilinear hyperbolic system
KW - mixed initial-boundary value problem
KW - global weakly discontinuous solution
KW - weak linear degeneracy
KW - matching condition
AB - In this paper we study the mixed initial-boundary value problem for inhomogeneous quasilinear hyperbolic systems in the domain D = {(t, x) | t ≥ 0, x ≥ 0}. Under the assumption that the source term satisfies the matching condition, a sufficient condition to guarantee the existence and uniqueness of global weakly discontinuous solution is given.
Fei Guo . (2007). Global Weakly Discontinuous Solutions to a Kind of Mixed Initial-boundary Value Problem for Inhomogeneous Quasilinear Hyperbolic Systems.
Journal of Partial Differential Equations. 20 (4).
365-384.
doi:
Copy to clipboard