- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Polar Coordinates for the Generalized Baouendi-Grushin Operator and Applications
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-20-322,
author = {Jingbo Dou , Pengcheng Niu and Junqiang Han },
title = {Polar Coordinates for the Generalized Baouendi-Grushin Operator and Applications},
journal = {Journal of Partial Differential Equations},
year = {2007},
volume = {20},
number = {4},
pages = {322--336},
abstract = { In this parer, by using the polar coordinates for the generalized Baouendi- Grushin operator L_α = \sum^n_{i=1}\frac{∂²}{∂x²_i} + \sum^m_{j=1}|x|^{2α} \frac{∂²}{∂y²_j}, where x = (x_1, x_2, …, x_n) ∈ \mathbb{R}^n, y = (y_1, y_2, …, y_m) ∈ \mathbb{R}^m, α › 0, we obtain the volume of the ball associated to L_α and prove the nonexistence for a second order evolution inequality which is relative to L_α.},
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5312.html}
}
TY - JOUR
T1 - Polar Coordinates for the Generalized Baouendi-Grushin Operator and Applications
AU - Jingbo Dou , Pengcheng Niu & Junqiang Han
JO - Journal of Partial Differential Equations
VL - 4
SP - 322
EP - 336
PY - 2007
DA - 2007/11
SN - 20
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5312.html
KW - Generalized Baouendi-Grushin operator
KW - polar coordinate
KW - nonexistence
KW - second order evolution inequality
AB - In this parer, by using the polar coordinates for the generalized Baouendi- Grushin operator L_α = \sum^n_{i=1}\frac{∂²}{∂x²_i} + \sum^m_{j=1}|x|^{2α} \frac{∂²}{∂y²_j}, where x = (x_1, x_2, …, x_n) ∈ \mathbb{R}^n, y = (y_1, y_2, …, y_m) ∈ \mathbb{R}^m, α › 0, we obtain the volume of the ball associated to L_α and prove the nonexistence for a second order evolution inequality which is relative to L_α.
Jingbo Dou , Pengcheng Niu and Junqiang Han . (2007). Polar Coordinates for the Generalized Baouendi-Grushin Operator and Applications.
Journal of Partial Differential Equations. 20 (4).
322-336.
doi:
Copy to clipboard