- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Local and Global Existence of Solutions of the Ginzburg-Landau Type Equations
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-20-220,
author = {Fujun Zhou and Shangbin Cui },
title = {Local and Global Existence of Solutions of the Ginzburg-Landau Type Equations},
journal = {Journal of Partial Differential Equations},
year = {2007},
volume = {20},
number = {3},
pages = {220--246},
abstract = {
This paper is devoted to studying the initial value problem of the Ginzburg-Landau type equations. We treat the case where the nonlinear interaction function is a general continuous function, not required to satisfy any smoothness conditions. Local and global existence results of solutions of the problem are given. Decay estimates are also shown.
}, issn = {2079-732X}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jpde/5304.html} }
TY - JOUR
T1 - Local and Global Existence of Solutions of the Ginzburg-Landau Type Equations
AU - Fujun Zhou & Shangbin Cui
JO - Journal of Partial Differential Equations
VL - 3
SP - 220
EP - 246
PY - 2007
DA - 2007/08
SN - 20
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5304.html
KW - Ginzburg-Landau type equations
KW - initial value problem
KW - local existence
KW - global existence
AB -
This paper is devoted to studying the initial value problem of the Ginzburg-Landau type equations. We treat the case where the nonlinear interaction function is a general continuous function, not required to satisfy any smoothness conditions. Local and global existence results of solutions of the problem are given. Decay estimates are also shown.
Fujun Zhou and Shangbin Cui . (2007). Local and Global Existence of Solutions of the Ginzburg-Landau Type Equations.
Journal of Partial Differential Equations. 20 (3).
220-246.
doi:
Copy to clipboard