- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Global Nonexistence of the Solutions for a Nonlinear Wave Equation with Q-Laplacian Operator
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-20-71,
author = {Hongjun Gao and Hui Zhang },
title = {Global Nonexistence of the Solutions for a Nonlinear Wave Equation with Q-Laplacian Operator},
journal = {Journal of Partial Differential Equations},
year = {2007},
volume = {20},
number = {1},
pages = {71--79},
abstract = {
We study the global nonexistence of the solutions of the nonlinear q-Laplacian wave equation u_{tt}-Δ_qu+(-Δ)^αu_t=|u|^{p-2}u, where 0 ‹ α ≤ 1, 2 ≤ q ‹ p. We obtain that the solution blows up in finite time if the initial energy is negative. Meanwhile, we also get the solution blows up in finite time with suitable positive initial energy under some conditions.
}, issn = {2079-732X}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jpde/5294.html} }
TY - JOUR
T1 - Global Nonexistence of the Solutions for a Nonlinear Wave Equation with Q-Laplacian Operator
AU - Hongjun Gao & Hui Zhang
JO - Journal of Partial Differential Equations
VL - 1
SP - 71
EP - 79
PY - 2007
DA - 2007/02
SN - 20
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5294.html
KW - q-Laplacian operator
KW - nonlinear wave equation
KW - global nonexistence
AB -
We study the global nonexistence of the solutions of the nonlinear q-Laplacian wave equation u_{tt}-Δ_qu+(-Δ)^αu_t=|u|^{p-2}u, where 0 ‹ α ≤ 1, 2 ≤ q ‹ p. We obtain that the solution blows up in finite time if the initial energy is negative. Meanwhile, we also get the solution blows up in finite time with suitable positive initial energy under some conditions.
Hongjun Gao and Hui Zhang . (2007). Global Nonexistence of the Solutions for a Nonlinear Wave Equation with Q-Laplacian Operator.
Journal of Partial Differential Equations. 20 (1).
71-79.
doi:
Copy to clipboard