- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Cited by
- BibTex
- RIS
- TXT
In this article we study the global existence of solutions to an initial boundary value problem for the Mullins equation which describes the groove development at the grain boundaries of a heated polycrystal, both the Dirichlet and the Neumann boundary conditions are considered. For the classical solution we also investigate the large time behavior, it is proved that the solution converges to a constant, in the L^∞(Ω)-norm, as time tends to infinity.
}, issn = {2079-732X}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jpde/5291.html} }In this article we study the global existence of solutions to an initial boundary value problem for the Mullins equation which describes the groove development at the grain boundaries of a heated polycrystal, both the Dirichlet and the Neumann boundary conditions are considered. For the classical solution we also investigate the large time behavior, it is proved that the solution converges to a constant, in the L^∞(Ω)-norm, as time tends to infinity.