- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Cited by
- BibTex
- RIS
- TXT
In this paper, we study the existence of nontrivial solutions for the problem -Δu=f(x,u,v)+h_1(x) in Ω, -Δv=g(x,u,v)+h_2(x) in Ω, u=v=0 on ∂Ω, where Ω is bounded domain in R^N and h_1,h_2∈L^2(Ω). The existence result is obtained by using the Leray-Schauder degree under the following condition on the nonlinearities f and g: \lim_{s,|t|→+∞}\frac{f(x,x,t)}{s}=\lim_{|s|,t→+∞}\frac{g(x,s,t)}{t}=λ_+, uniformly on Ω, \lim_{-s,|t|→+∞}\frac{f(x,x,t)}{s}=\lim_{|s|,-t→+∞}\frac{g(x,s,t)}{t}=λ_-, uniformly on Ω, where λ_+, λ_-∉{0}∪ σ(-Δ), σ(-Δ) denote the spectrum of -Δ. The cases (i) where λ_+=λ_ and (ii) where λ_+≠λ_- such that the closed interval with endpoints λ_+, λ_- contains at most one simple eigenvalue of -Δ are considered.
}, issn = {2079-732X}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jpde/5250.html} }In this paper, we study the existence of nontrivial solutions for the problem -Δu=f(x,u,v)+h_1(x) in Ω, -Δv=g(x,u,v)+h_2(x) in Ω, u=v=0 on ∂Ω, where Ω is bounded domain in R^N and h_1,h_2∈L^2(Ω). The existence result is obtained by using the Leray-Schauder degree under the following condition on the nonlinearities f and g: \lim_{s,|t|→+∞}\frac{f(x,x,t)}{s}=\lim_{|s|,t→+∞}\frac{g(x,s,t)}{t}=λ_+, uniformly on Ω, \lim_{-s,|t|→+∞}\frac{f(x,x,t)}{s}=\lim_{|s|,-t→+∞}\frac{g(x,s,t)}{t}=λ_-, uniformly on Ω, where λ_+, λ_-∉{0}∪ σ(-Δ), σ(-Δ) denote the spectrum of -Δ. The cases (i) where λ_+=λ_ and (ii) where λ_+≠λ_- such that the closed interval with endpoints λ_+, λ_- contains at most one simple eigenvalue of -Δ are considered.