- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Cited by
- BibTex
- RIS
- TXT
The Lie-group formalism is applied to investigate the symmetries of the modified Boussinesq system with variable coefficients. We derived the infinitesimals and the admissible forms of the coefficients that admit the classical symmetry group. The reduced systems of ordinary differential equations deduced from the optimal system of subalgebras are further studied and some exact solutions are obtained.
}, issn = {2079-732X}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jpde/5249.html} }The Lie-group formalism is applied to investigate the symmetries of the modified Boussinesq system with variable coefficients. We derived the infinitesimals and the admissible forms of the coefficients that admit the classical symmetry group. The reduced systems of ordinary differential equations deduced from the optimal system of subalgebras are further studied and some exact solutions are obtained.