- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
On Global Smooth Solution of a Semi-linear System of Wave Equations in R3
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-22-74,
author = {Haigen Wu },
title = {On Global Smooth Solution of a Semi-linear System of Wave Equations in R3},
journal = {Journal of Partial Differential Equations},
year = {2009},
volume = {22},
number = {1},
pages = {74--96},
abstract = {
In this paper we consider the Cauchy problem for a semi-linear system of wave equations with Hamilton structure. We prove the existence of global smooth solution of the systemfor subcritical case by using conservation of energy and Strichartz's estimate. On the basis ofMorawetz-Poho\check{z}ev identity, we obtain the same result for the critical case.
}, issn = {2079-732X}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jpde/5248.html} }
TY - JOUR
T1 - On Global Smooth Solution of a Semi-linear System of Wave Equations in R3
AU - Haigen Wu
JO - Journal of Partial Differential Equations
VL - 1
SP - 74
EP - 96
PY - 2009
DA - 2009/02
SN - 22
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5248.html
KW - Critical
KW - subcritical
KW - Strichartz's estimate
KW - Lagrangian function
KW - Morawetz-Poho\check{z}ev identity
KW - Huygen's principle
AB -
In this paper we consider the Cauchy problem for a semi-linear system of wave equations with Hamilton structure. We prove the existence of global smooth solution of the systemfor subcritical case by using conservation of energy and Strichartz's estimate. On the basis ofMorawetz-Poho\check{z}ev identity, we obtain the same result for the critical case.
Haigen Wu . (2009). On Global Smooth Solution of a Semi-linear System of Wave Equations in R3.
Journal of Partial Differential Equations. 22 (1).
74-96.
doi:
Copy to clipboard