- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Cited by
- BibTex
- RIS
- TXT
Lagrange's variation-of-constantsmethod for solving linear inhomogeneous ordinary differential equations (ode's) is replaced by amethod based on the Loewy decomposition of the corresponding homogeneous equation. It uses only properties of the equations and not of its solutions. As a consequence it has the advantage that it may be generalized for partial differential equations (pde's). It is applied to equations of second order in two independent variables, and to a certain system of third-order pde's. Therewith all possible linear inhomogeneous pde's are covered that may occur when third-order linear homogeneous pde's in two independent variables are solved.
}, issn = {2079-732X}, doi = {https://doi.org/10.4208/jpde.v23.n4.5}, url = {http://global-sci.org/intro/article_detail/jpde/5240.html} }Lagrange's variation-of-constantsmethod for solving linear inhomogeneous ordinary differential equations (ode's) is replaced by amethod based on the Loewy decomposition of the corresponding homogeneous equation. It uses only properties of the equations and not of its solutions. As a consequence it has the advantage that it may be generalized for partial differential equations (pde's). It is applied to equations of second order in two independent variables, and to a certain system of third-order pde's. Therewith all possible linear inhomogeneous pde's are covered that may occur when third-order linear homogeneous pde's in two independent variables are solved.