- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Cited by
- BibTex
- RIS
- TXT
We consider the problem of whether the equation $Δu = p(x) f (u)$ on $R^N, N ≥ 3$, has a positive solution for which $lim_{|x|→∞} u(x)=∞$ where f is locally Lipschitz continuous, positive, and nondecreasing on (0,∞) and satisfies $∫^∞_1[F(t)]^{-1/2}dt=∞$ where $F(t)=∫^t_0f(s)ds$. The nonnegative function p is assumed to be asymptotically radial in a certain sense. We show that a sufficient condition to ensure such a solution u exists is that p satisfies $∫^∞_0r\min_{|x|=r}p(x)dr=∞$. Conversely, we show that a necessary condition for the solution to exist is that p satisfies $∫^∞_0r^{1+ε}\min_{|x|=r}p(x)dr=∞$ for all $ε > 0$.
}, issn = {2079-732X}, doi = {https://doi.org/10.4208/jpde.v23.n4.4}, url = {http://global-sci.org/intro/article_detail/jpde/5239.html} }We consider the problem of whether the equation $Δu = p(x) f (u)$ on $R^N, N ≥ 3$, has a positive solution for which $lim_{|x|→∞} u(x)=∞$ where f is locally Lipschitz continuous, positive, and nondecreasing on (0,∞) and satisfies $∫^∞_1[F(t)]^{-1/2}dt=∞$ where $F(t)=∫^t_0f(s)ds$. The nonnegative function p is assumed to be asymptotically radial in a certain sense. We show that a sufficient condition to ensure such a solution u exists is that p satisfies $∫^∞_0r\min_{|x|=r}p(x)dr=∞$. Conversely, we show that a necessary condition for the solution to exist is that p satisfies $∫^∞_0r^{1+ε}\min_{|x|=r}p(x)dr=∞$ for all $ε > 0$.