- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Cited by
- BibTex
- RIS
- TXT
Asymptotic large- and short-time behavior of solutions of the linear dispersion equation u_t = u_{xxx} in R×R_+, and its (2k+1)th-order extensions are studied. Such a refined scattering is based on a "Hermitian" spectral theory for a pair {B,B^∗} of non self-adjoint rescaled operators B=D^3_y+\frac13yD_y+\frac13I, and the adjoint one B^∗=D^3_y-\frac13yD_y, with the discrete spectrum σ(B)=σ(B^∗)={λ_l=-l/3, l=0,1,2,...} and eigenfunctions for B, {ψ_l(y)=[(-1)^l/\sqrt{l!}]D^l_yAi(y), l ≥ 0}, where Ai(y) isAiry's classic function. Eigenfunctions of B^∗ are then generalized Hermite polynomials. Applications to very singular similarity solutions (VSSs) of the semilinear dispersion equation with absorption, u_S(x,t)=t^{-\frac{1}{p-1}}f(\frac{x}{t^{\frac13}}): u_t=u_{xxx}-|u|^{p-1}u in R×R_+, p > 1, and to its higher-order counterparts are presented. The goal is, by using various techniques, to show that there exists a countable sequence of critical exponents {p_l=1+3/(l+1), l=0,1,2,...} such that, at each p= p_l , a p-branch of VSSs bifurcates from the corresponding eigenfunction ψ_l of the linear operator B above.
}, issn = {2079-732X}, doi = {https://doi.org/10.4208/jpde.v24.n3.2}, url = {http://global-sci.org/intro/article_detail/jpde/5208.html} }Asymptotic large- and short-time behavior of solutions of the linear dispersion equation u_t = u_{xxx} in R×R_+, and its (2k+1)th-order extensions are studied. Such a refined scattering is based on a "Hermitian" spectral theory for a pair {B,B^∗} of non self-adjoint rescaled operators B=D^3_y+\frac13yD_y+\frac13I, and the adjoint one B^∗=D^3_y-\frac13yD_y, with the discrete spectrum σ(B)=σ(B^∗)={λ_l=-l/3, l=0,1,2,...} and eigenfunctions for B, {ψ_l(y)=[(-1)^l/\sqrt{l!}]D^l_yAi(y), l ≥ 0}, where Ai(y) isAiry's classic function. Eigenfunctions of B^∗ are then generalized Hermite polynomials. Applications to very singular similarity solutions (VSSs) of the semilinear dispersion equation with absorption, u_S(x,t)=t^{-\frac{1}{p-1}}f(\frac{x}{t^{\frac13}}): u_t=u_{xxx}-|u|^{p-1}u in R×R_+, p > 1, and to its higher-order counterparts are presented. The goal is, by using various techniques, to show that there exists a countable sequence of critical exponents {p_l=1+3/(l+1), l=0,1,2,...} such that, at each p= p_l , a p-branch of VSSs bifurcates from the corresponding eigenfunction ψ_l of the linear operator B above.