- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Existence of Solutions for Schrodinger-Poisson Systems with Sign-changing Weight
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-24-180,
author = {Xiaohui Yu },
title = {Existence of Solutions for Schrodinger-Poisson Systems with Sign-changing Weight},
journal = {Journal of Partial Differential Equations},
year = {2011},
volume = {24},
number = {2},
pages = {180--194},
abstract = {
We study the existence of solutions for the Schrödinger-Poisson system $-Δu+u+k(x)φu=α(x)|u|^{p-1}u$, in $R^3$, $-Δφ=k(x)u^2$, in $R^3$, where 3 ≤ p < 5, α(x) is a sign-changing function such that both the supports of α^+ and α^- may have infinite measure. We show that the problem has at least one nontrivial solution under some assumptions.
}, issn = {2079-732X}, doi = {https://doi.org/10.4208/jpde.v24.n2.7}, url = {http://global-sci.org/intro/article_detail/jpde/5206.html} }
TY - JOUR
T1 - Existence of Solutions for Schrodinger-Poisson Systems with Sign-changing Weight
AU - Xiaohui Yu
JO - Journal of Partial Differential Equations
VL - 2
SP - 180
EP - 194
PY - 2011
DA - 2011/05
SN - 24
DO - http://doi.org/10.4208/jpde.v24.n2.7
UR - https://global-sci.org/intro/article_detail/jpde/5206.html
KW - Schrödinger-Poisson system
KW - existence result
KW - sign-changing weight
AB -
We study the existence of solutions for the Schrödinger-Poisson system $-Δu+u+k(x)φu=α(x)|u|^{p-1}u$, in $R^3$, $-Δφ=k(x)u^2$, in $R^3$, where 3 ≤ p < 5, α(x) is a sign-changing function such that both the supports of α^+ and α^- may have infinite measure. We show that the problem has at least one nontrivial solution under some assumptions.
Xiaohui Yu . (2011). Existence of Solutions for Schrodinger-Poisson Systems with Sign-changing Weight.
Journal of Partial Differential Equations. 24 (2).
180-194.
doi:10.4208/jpde.v24.n2.7
Copy to clipboard